Math 31 - Homework 6 Solutions

1. We will see in class that the kernel of any homomorphism is a normal subgroup. Conversely, you will show that any normal subgroup is the kernel of some homomorphism. That is, let G be a group with N a normal subgroup of G, and define a function $\pi: G \rightarrow G / N$ by

$$
\pi(g)=N g
$$

for all $g \in G$. Prove that π is a homomorphism, and that $\operatorname{ker} \pi=N$.
Proof. We first check that π is a homomorphism. Let $g, h \in G$, and observe that

$$
\pi(g h)=N g h=(N g)(N h)=\pi(g) \pi(h) .
$$

Therefore, π is a homomorphism. Now we just need to identify its kernel. Suppose that $x \in \operatorname{ker} \pi$, so that

$$
\pi(x)=N e
$$

Since $\pi(x)=N x$ by definition, this tells us that $N x=N e$. These two cosets are equal if and only if $x e^{-1} \in N$, or $x \in N$. Therefore, $x \in \operatorname{ker} \pi$ if and only if $x \in N$, so $\operatorname{ker} \pi=N$.
2. Recall that \mathbb{R}^{\times}is the group of nonzero real numbers (under multiplication), and let $N=$ $\{-1,1\}$. Show that N is a normal subgroup of \mathbb{R}^{\times}, and that \mathbb{R}^{\times} / N is isomorphic to the group of positive real numbers under multiplication. [Hint: Use the Fundamental Homomorphism Theorem.]

Proof. Let \mathbb{R}_{+}^{\times}denote the group of positive real numbers under multiplication. Define a map $\varphi: \mathbb{R}^{\times} \rightarrow \mathbb{R}_{+}^{\times}$by

$$
\varphi(a)=|a| .
$$

Then φ is a homomorphism, since given $a, b \in \mathbb{R}^{\times}$,

$$
\varphi(a b)=|a b|=|a||b|=\varphi(a) \varphi(b) .
$$

Furthermore, it is onto, since if a is a positive real number, $\varphi(a)=a$. Finally,

$$
\operatorname{ker} \varphi=\left\{a \in \mathbb{R}^{\times}:|a|=1\right\}=\{-1,1\}=N .
$$

Therefore, N is a normal subgroup of \mathbb{R}^{\times}. (This is also true simply because \mathbb{R}^{\times}is abelian.) Furthermore, the Fundamental Homomorphism Theorem implies that

$$
\mathbb{R}^{\times} /\{-1,1\} \cong \mathbb{R}_{+}^{\times}
$$

3. [Saracino, \#13.1] Let $\varphi: \mathbb{Z}_{8} \rightarrow \mathbb{Z}_{4}$ be given by

$$
\varphi(x)=[x]_{4},
$$

i.e., the remainder of $x \bmod 4$. Find $\operatorname{ker} \varphi$. To which familiar group is $\mathbb{Z}_{8} / \operatorname{ker} \varphi$ isomorphic?

Solution. Note that if $x \in \mathbb{Z}_{8}$, then $\varphi(x)=0$ means that $[x]_{4}=0$, so 4 must divide x. Therefore, the kernel of φ is precisely the set

$$
\operatorname{ker} \varphi=\{0,4\}
$$

Since this subgroup has two elements, $\mathbb{Z}_{8} / \operatorname{ker} \varphi$ must have order 4 . Therefore, it is isomorphic to either \mathbb{Z}_{4} or the Klein 4-group. We claim that it is \mathbb{Z}_{4} - note that the coset $\operatorname{ker} \varphi+1$ generates the quotient group:

$$
\begin{aligned}
\operatorname{ker} \varphi+1 & =\{1,5\}(\operatorname{ker} \varphi+1)+(\operatorname{ker} \varphi+1) \quad=\operatorname{ker} \varphi+2=\{2,6\} \\
(\operatorname{ker} \varphi+2)+(\operatorname{ker} \varphi+1) & =\operatorname{ker} \varphi+3=\{3,7\} \\
(\operatorname{ker} \varphi+3)+(\operatorname{ker} \varphi+1) & =\operatorname{ker} \varphi+4=\operatorname{ker} \varphi+0=\{0,4\},
\end{aligned}
$$

and these are all the cosets. Thus $\mathbb{Z}_{8} / \operatorname{ker} \varphi$ is a cyclic group of order 4 , so it is isomorphic to \mathbb{Z}_{4}.
4. If G is a group and $M \unlhd G, N \unlhd G$, prove that $M \cap N \unlhd G$. [You proved on an earlier assignment that $M \cap N$ is a subgroup of G, so you only need to prove that it is normal.]

Proof. As mentioned above, recall that $M \cap N$ is a subgroup of G. Let $a \in G$; we need to verify that $a(M \cap N) a^{-1} \subseteq M \cap N$. Let $g \in M \cap N$. Then $g \in M$, so $a g a^{-1} \in M$ as M is normal. Similarly, $g \in N$, and $a g a^{-1} \in N$ since N is normal. Therefore, $a g a^{-1} \in M \cap N$. Since g was arbitrary, we have shown that $a(M \cap N) a^{-1} \subseteq M \cap N$, so $M \cap N \unlhd G$.
5. Classify all abelian groups of order 600 up to isomorphism.

Solution. The first thing that we need to do is to factor 600 into a product of primes:

$$
600=2^{3} \cdot 3 \cdot 5^{2}
$$

The possible abelian groups of order 8 are:

$$
\begin{aligned}
& \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \\
& \mathbb{Z}_{2} \times \mathbb{Z}_{4} \\
& \mathbb{Z}_{8}
\end{aligned}
$$

There is only one abelian group of order three, namely \mathbb{Z}_{3}, and for 25 there are two possibilities:

$$
\begin{aligned}
& \mathbb{Z}_{5} \times \mathbb{Z}_{5} \\
& \mathbb{Z}_{25} .
\end{aligned}
$$

Therefore, the abelian groups of order 600, up to isomorphism, are

$$
\begin{aligned}
& \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5} \\
& \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{25} \\
& \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5} \\
& \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{25} \\
& \mathbb{Z}_{8} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5} \\
& \mathbb{Z}_{8} \times \mathbb{Z}_{3} \times \mathbb{Z}_{25}
\end{aligned}
$$

6. [Saracino, \#11.17 and 11.18] Let G be a group, and let $H \leq G$.
(a) If G is abelian, prove that G / H is abelian. [Hint: You may want to use a result from the last homework assignment.]

Proof. You proved on the last assignment that any homomorphic image of an abelian group is abelian. Therefore, consider the canonical map $\pi: G \rightarrow G / H$ given by $\pi(a)=H a$ (as defined in Problem 1). This is onto, and since G is abelian, G / H must also be abelian.
This can also be proven more directly. Suppose that $H a, H b \in G / H$. Then

$$
(H a)(H b)=H a b=H b a=(H b)(H a),
$$

so G / H is abelian.
(b) Prove that if G is cyclic, then G / H is also cyclic.

Proof. Suppose that G is cyclic, and let $a \in G$ be a generator for G. We claim that the coset $H a$ generates G / H. It suffices to show that if $H b \in G / H$ is any right coset of H, then we have $H b=(H a)^{m}$ for some $m \in \mathbb{Z}$. Well, $b \in G=\langle a\rangle$, so there exists an integer m such that $b=a^{m}$. Then we have

$$
(H a)^{m}=\underbrace{(H a)(H a) \cdots(H a)}_{m \text { times }}=H a^{m}=H b .
$$

Since $H b$ was arbitrary, we see that $G / H=\langle H a\rangle$, so the quotient group is cyclic.
7. Prove that if G_{1} and G_{2} are abelian groups, then $G_{1} \times G_{2}$ is abelian.

Proof. Let $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right) \in G_{1} \times G_{2}$. Then

$$
\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)=\left(a_{1} b_{1}, a_{2} b_{2}\right)=\left(b_{1} a_{1}, b_{2} a_{2}\right)=\left(b_{1}, b_{2}\right)\left(a_{1}, a_{2}\right),
$$

since both G_{1} and G_{2} are abelian. Therefore, $G_{1} \times G_{2}$ is abelian.
8. If G_{1} and G_{2} are groups, prove that $G_{1} \times G_{2} \cong G_{2} \times G_{1}$.

Proof. Define $\varphi: G_{1} \times G_{2} \rightarrow G_{2} \times G_{1}$ by $\varphi\left(a_{1}, a_{2}\right)=\left(a_{2}, a_{1}\right)$. Then φ is a homomorphism, since if we take $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right) \in G_{1} \times G_{2}$, then

$$
\begin{aligned}
\varphi\left(\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\right) & =\varphi\left(a_{1} b_{1}, a_{2} b_{2}\right) \\
& =\left(a_{2} b_{2}, a_{1} b_{1}\right) \\
& =\left(a_{2}, a_{1}\right)\left(b_{2}, b_{1}\right) \\
& =\varphi\left(a_{1}, a_{2}\right) \varphi\left(b_{1}, b_{2}\right) .
\end{aligned}
$$

Now observe that φ is onto, since given $\left(a_{2}, a_{1}\right) \in G_{2} \times G_{1}, \varphi\left(a_{1}, a_{2}\right)=\left(a_{2}, a_{1}\right)$. Finally, it is easy to see that $\varphi\left(a_{1}, a_{2}\right)=\left(e_{2}, e_{1}\right)$ if and only if $a_{1}=e_{1}$ and $a_{2}=e_{2}$. Therefore, $\operatorname{ker} \varphi=\{e\}$, and φ is an isomorphism.
9. Let $G=\mathbb{Z}_{4} \times \mathbb{Z}_{6}$, and let $H=\langle(1,0)\rangle$. Find all the right cosets of H in G, and compute the quotient group G / H. (That is, identify it with a more familiar group.)

Proof. First note that the subgroup H consists of the elements

$$
H=\{(0,0),(1,0),(2,0),(3,0)\} .
$$

Therefore, the right cosets of H are

$$
\begin{aligned}
H+(0,0) & =\{(0,0),(1,0),(2,0),(3,0)\} \\
H+(0,1) & =\{(0,1),(1,1),(2,1),(3,1)\} \\
H+(0,2) & =\{(0,2),(1,2),(2,2),(3,2)\} \\
H+(0,3) & =\{(0,3),(1,3),(2,3),(3,3)\} \\
H+(0,4) & =\{(0,4),(1,4),(2,4),(3,4)\} \\
H+(0,5) & =\{(0,5),(1,5),(2,5),(3,5)\}
\end{aligned}
$$

and you can check that every element of G appears on this list. Therefore, there are six cosets, and it is not hard to see that the group operation on G / H looks exactly like addition mod 6 . Therefore, $G / H \cong \mathbb{Z}_{6}$. (To be more rigorous, you could observe that G / H is an abelian group of order 6, and the Fundamental Theorem of Finite Abelian Groups tells us that there is only one up to isomorphism, namely \mathbb{Z}_{6}.)

