
Math 31 – Homework 6 Solutions

1. We will see in class that the kernel of any homomorphism is a normal subgroup. Conversely,
you will show that any normal subgroup is the kernel of some homomorphism. That is, let G be a
group with N a normal subgroup of G, and define a function π : G→ G/N by

π(g) = Ng

for all g ∈ G. Prove that π is a homomorphism, and that kerπ = N .

Proof. We first check that π is a homomorphism. Let g, h ∈ G, and observe that

π(gh) = Ngh = (Ng)(Nh) = π(g)π(h).

Therefore, π is a homomorphism. Now we just need to identify its kernel. Suppose that x ∈ kerπ,
so that

π(x) = Ne.

Since π(x) = Nx by definition, this tells us that Nx = Ne. These two cosets are equal if and only
if xe−1 ∈ N , or x ∈ N . Therefore, x ∈ kerπ if and only if x ∈ N , so kerπ = N .

2. Recall that R× is the group of nonzero real numbers (under multiplication), and let N =
{−1, 1}. Show that N is a normal subgroup of R×, and that R×/N is isomorphic to the group of
positive real numbers under multiplication. [Hint: Use the Fundamental Homomorphism Theo-
rem.]

Proof. Let R×
+ denote the group of positive real numbers under multiplication. Define a map

ϕ : R× → R×
+ by

ϕ(a) = |a|.

Then ϕ is a homomorphism, since given a, b ∈ R×,

ϕ(ab) = |ab| = |a||b| = ϕ(a)ϕ(b).

Furthermore, it is onto, since if a is a positive real number, ϕ(a) = a. Finally,

kerϕ = {a ∈ R× : |a| = 1} = {−1, 1} = N.

Therefore, N is a normal subgroup of R×. (This is also true simply because R× is abelian.)
Furthermore, the Fundamental Homomorphism Theorem implies that

R×/{−1, 1} ∼= R×
+.
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3. [Saracino, #13.1] Let ϕ : Z8 → Z4 be given by

ϕ(x) = [x]4,

i.e., the remainder of x mod 4. Find kerϕ. To which familiar group is Z8/ kerϕ isomorphic?

Solution. Note that if x ∈ Z8, then ϕ(x) = 0 means that [x]4 = 0, so 4 must divide x. Therefore,
the kernel of ϕ is precisely the set

kerϕ = {0, 4}.

Since this subgroup has two elements, Z8/ kerϕ must have order 4. Therefore, it is isomorphic to
either Z4 or the Klein 4-group. We claim that it is Z4—note that the coset kerϕ+ 1 generates the
quotient group:

kerϕ+ 1 = {1, 5}(kerϕ+ 1) + (kerϕ+ 1) = kerϕ+ 2 = {2, 6}
(kerϕ+ 2) + (kerϕ+ 1) = kerϕ+ 3 = {3, 7}
(kerϕ+ 3) + (kerϕ+ 1) = kerϕ+ 4 = kerϕ+ 0 = {0, 4},

and these are all the cosets. Thus Z8/ kerϕ is a cyclic group of order 4, so it is isomorphic to Z4.

4. If G is a group and MEG, NEG, prove that M ∩NEG. [You proved on an earlier assignment
that M ∩N is a subgroup of G, so you only need to prove that it is normal.]

Proof. As mentioned above, recall that M ∩ N is a subgroup of G. Let a ∈ G; we need to verify
that a(M ∩ N)a−1 ⊆ M ∩ N . Let g ∈ M ∩ N . Then g ∈ M , so aga−1 ∈ M as M is normal.
Similarly, g ∈ N , and aga−1 ∈ N since N is normal. Therefore, aga−1 ∈ M ∩ N . Since g was
arbitrary, we have shown that a(M ∩N)a−1 ⊆M ∩N , so M ∩N EG.

5. Classify all abelian groups of order 600 up to isomorphism.

Solution. The first thing that we need to do is to factor 600 into a product of primes:

600 = 23 · 3 · 52.

The possible abelian groups of order 8 are:

Z2 × Z2 × Z2

Z2 × Z4

Z8.

There is only one abelian group of order three, namely Z3, and for 25 there are two possibilities:

Z5 × Z5

Z25.
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Therefore, the abelian groups of order 600, up to isomorphism, are

Z2 × Z2 × Z2 × Z3 × Z5 × Z5

Z2 × Z2 × Z2 × Z3 × Z25

Z2 × Z4 × Z3 × Z5 × Z5

Z2 × Z4 × Z3 × Z25

Z8 × Z3 × Z5 × Z5

Z8 × Z3 × Z25.

6. [Saracino, #11.17 and 11.18] Let G be a group, and let H ≤ G.

(a) If G is abelian, prove that G/H is abelian. [Hint: You may want to use a result from the
last homework assignment.]

Proof. You proved on the last assignment that any homomorphic image of an abelian group
is abelian. Therefore, consider the canonical map π : G → G/H given by π(a) = Ha (as
defined in Problem 1). This is onto, and since G is abelian, G/H must also be abelian.

This can also be proven more directly. Suppose that Ha,Hb ∈ G/H. Then

(Ha)(Hb) = Hab = Hba = (Hb)(Ha),

so G/H is abelian.

(b) Prove that if G is cyclic, then G/H is also cyclic.

Proof. Suppose that G is cyclic, and let a ∈ G be a generator for G. We claim that the coset
Ha generates G/H. It suffices to show that if Hb ∈ G/H is any right coset of H, then we
have Hb = (Ha)m for some m ∈ Z. Well, b ∈ G = 〈a〉, so there exists an integer m such that
b = am. Then we have

(Ha)m = (Ha)(Ha) · · · (Ha)︸ ︷︷ ︸
m times

= Ham = Hb.

Since Hb was arbitrary, we see that G/H = 〈Ha〉, so the quotient group is cyclic.

7. Prove that if G1 and G2 are abelian groups, then G1 ×G2 is abelian.

Proof. Let (a1, a2), (b1, b2) ∈ G1 ×G2. Then

(a1, a2)(b1, b2) = (a1b1, a2b2) = (b1a1, b2a2) = (b1, b2)(a1, a2),

since both G1 and G2 are abelian. Therefore, G1 ×G2 is abelian.
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8. If G1 and G2 are groups, prove that G1 ×G2
∼= G2 ×G1.

Proof. Define ϕ : G1 ×G2 → G2 ×G1 by ϕ(a1, a2) = (a2, a1). Then ϕ is a homomorphism, since if
we take (a1, a2), (b1, b2) ∈ G1 ×G2, then

ϕ((a1, a2)(b1, b2)) = ϕ(a1b1, a2b2)

= (a2b2, a1b1)

= (a2, a1)(b2, b1)

= ϕ(a1, a2)ϕ(b1, b2).

Now observe that ϕ is onto, since given (a2, a1) ∈ G2 ×G1, ϕ(a1, a2) = (a2, a1). Finally, it is easy
to see that ϕ(a1, a2) = (e2, e1) if and only if a1 = e1 and a2 = e2. Therefore, kerϕ = {e}, and ϕ is
an isomorphism.

9. Let G = Z4 × Z6, and let H = 〈(1, 0)〉. Find all the right cosets of H in G, and compute the
quotient group G/H. (That is, identify it with a more familiar group.)

Proof. First note that the subgroup H consists of the elements

H = {(0, 0), (1, 0), (2, 0), (3, 0)}.

Therefore, the right cosets of H are

H + (0, 0) = {(0, 0), (1, 0), (2, 0), (3, 0)}
H + (0, 1) = {(0, 1), (1, 1), (2, 1), (3, 1)}
H + (0, 2) = {(0, 2), (1, 2), (2, 2), (3, 2)}
H + (0, 3) = {(0, 3), (1, 3), (2, 3), (3, 3)}
H + (0, 4) = {(0, 4), (1, 4), (2, 4), (3, 4)}
H + (0, 5) = {(0, 5), (1, 5), (2, 5), (3, 5)}

and you can check that every element of G appears on this list. Therefore, there are six cosets,
and it is not hard to see that the group operation on G/H looks exactly like addition mod 6.
Therefore, G/H ∼= Z6. (To be more rigorous, you could observe that G/H is an abelian group of
order 6, and the Fundamental Theorem of Finite Abelian Groups tells us that there is only one up
to isomorphism, namely Z6.)
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